
www.usn.no

FMH606 Master’s Thesis 2022
Industrial IT and Automation

Development of Open Source Datalogging

and Monitoring Resources for IoT Platform

GraphQL
Simplification API

Database
GraphQL

Simplification API
Datalogging
Application

GraphQL
Simplification API

Datalogging
Application

Datalogging
Application

DAQ

Python

C#

Arduino / C++

DAQ

DAQ

Python

C#

Arduino / C++

Libraries / APIs
Desktop Applications

Dimension Four
GraphQL

Monitoring
Application

Web Application

ASP.NET Core

Håkon Helgesen

Faculty of Technology, Natural Sciences and Maritime Sciences

Campus Porsgrunn

http://www.usn.no

www.usn.no

Course: FMH606 Master’s Thesis 2022
Title: Development of Open Source Datalogging and Monitoring Resources for

IoT Platform
Pages: 68

Keywords: <API, GraphQL, IoT, C#, Python, Arduino, Raspberry PI, DAQ>

Student: Håkon Helgesen
Supervisor: Hans-Petter Halvorsen

External partner: Dimension Four

Summary:
Planning, development, and partial deployment of APIs and a web-application designed to
interact with a GraphQL API. The project is aimed at everyone, to remove the need for
GraphQL knowledge, while simultaneously allowing the use of Dimension Four’s GraphQL
solution. Explanations for key aspects of the concept of ”internet of things”, the planning and
development of the APIs and web-application, and the resulting product. Documentation
on how to install and use the APIs and web-application.

The University of South-Eastern Norway accepts no responsibility for the results and
conclusions presented in this report.

http://www.usn.no

Preface

GraphQL is a query language which is becoming ever more present in the Internet of
Things. For an interested developer, beginner or expert, the time to learn and understand
GraphQL may not be available. Thus the project which is documented in this paper was
created. This paper documents the development of APIs and a web-application. The
APIs are in the form of libraries for both Python and Arduino, while the web-application
is developed in ASP.net Core for data monitoring. The project came to be because
the University of South-Eastern Norway wants to support local business, by using their
service. Because GraphQL is not a subject in the curriculum, nor is there capacity to
include it, it was suggested to streamline the integration of the service with APIs. Thus,
this project was conducted and completed to circumvent the need for GraphQL knowledge.
Initially planed for students, this project is for everyone interested in using the service
provided by Dimension Four.

Duirng this project, we have worked with both the University and Dimension Four, taking
suggestions from both. I would like to thank Dimension Four for allowing me to carry out
this project, and especially thank Daniel Warholm, for showing great interest in the project
all the way from start to finish. I would also like to thank the project supervisor from
USN, Hans-Petter Halvorsen, for giving suggestions, constructive criticism, and guidance
throughout the project. Porsgrunn, 18th May 2022

Håkon Helgesen

3

Contents

Preface 3

Contents 5

List of Figures . 7

Nomenclature . 8

1 Introduction 9

1.1 Background . 9

2 Internet of Things 11

2.1 MQTT . 11

2.2 REST . 12

2.3 GraphQL . 12

2.4 ASP.NET Core . 12

2.5 Thingspeak . 12

2.6 Grafana . 13

2.7 Github . 13

2.8 IoT Maker Devices . 13

2.8.1 Arduino . 13

2.8.2 Raspberry PI . 14

3 Programming Languages 15

3.1 Python . 15

3.2 C# . 15

4 Dimension Four 16

4.1 GraphQL Solution . 16

4.1.1 Dimension Four Terminology . 16

4.2 GraphQL Playground . 17

5 Development 19

5.1 Planning . 19

5.2 Python Development . 19

5.3 Arduino Development . 25

5.4 C# Development . 27

4

6 Python Library 46

6.1 Python Examples . 47

7 Arduino Library 48

8 ASP.net Web-Application 49

9 Discussion 57

10 Conclusion 58

Bibliography 59

A Project Description 61

B Gantt Diagram 64

5

List of Figures

1.1 . 10

4.1 Tabs for organizing queries. 17
4.2 Paginated text field for querying, with query. 18
4.3 Headers for proving authority. 18
4.4 Response field with response from Create Space query. 18

5.1 The Create Space function in Python. 21
5.2 How to remove unnecessary syntax from a dictionary. 21
5.3 Sending Posts with Python. 22
5.4 The Python Create Headers function. 23
5.5 A function for saving data. 24
5.6 The Arduino Library Header file. 25
5.7 Passing Clients and Serials to an Arduino Library. 26
5.8 Establishing the query object in the Arduino Library. 26
5.9 Serializing and posting the query object to Dimension Four. 27
5.10 The Space class, it’s properties, and the first half of the instancing function.

It prepares sub-spaces, in case the space is a parent. 28
5.11 This figure depicts the second half of the Space class’ instancing function.

It prepares the list of points belonging to the space. 29
5.12 This is the Point class.. 30
5.13 This depicts the Signal class. 31
5.14 This is the Space List back-end. 33
5.15 This depicts the HTML and javascript behind the Space List Razor-page. . 34
5.16 This is the javascript function for partial update of the points list. 35
5.17 This figure depicts the back-end of the Signal Display. 37
5.18 This is the javascript code responsible for initially drawing the plot. 38
5.19 This is the javascript function responsible for redrawing the plot with new

data. 39
5.20 This figure represents the back-end of the Admin Page. 41
5.21 This is the HTML of the first two administrative actions, as well as the

action selector. 42
5.22 This is the javascript behind the first two administrative actions, Create

Space and Create Sub-Space. 43
5.23 The back-end of the Index page. 44

6

5.24 This is the javascript for declaring API credentials. 45

8.1 This is the Index page of the web-app. This is where the user presents
their API credentials. 50

8.2 This is the Space List page of the web-app. Select a space to display points
and signals. 51

8.3 This is the Signal Display page. Here the user may choose points and
signal types to display from. 52

8.4 This is the initial Administration page. The user may select an action to
perform from the list. 53

8.5 This is the Create Space action page. 53
8.6 This is the Create Sub-Space action page. The user may select a parent

space from the right-hand list. 54
8.7 This is the Delete Space action page. 54
8.8 This is the Create Point action page. The user may select a parent space

from the right-hand list. 55
8.9 This is the Add Signal Type action page. 55
8.10 This is the Remove Signal Type action page. 56
8.11 This is the Delete Point action page. 56

7

Nomenclature

Symbol Explanation

API Application Programming Interface
IoT Internet of Things
AJAX Asynchronous Javascript And XML
UI User Interface
UX User Experience
GUI Graphical User Interface
DAQ Data Acquisition
USN University of South-Eastern Norway
MQTT An IoT communication protocol
GraphQL An API query language
Python A popular, highly readable programming language
C# A popular, high level programming language
IT Information Technology
UML Unified Modelling Language
ASP.net A popular C# framework
HTTP HyperText Transfer Protocol

8

1 Introduction

In today’s world of Industry 4.0 and internet of things, new solutions for data-collection
and data-accessibility are being developed constantly. For many people, for example
hobbyists and students, time may be a hot commodity and thus effective solutions become
inaccessible. This project aims to increase accessibility to such a solution by establishing
APIs in several popular programming languages.

1.1 Background

USN uses different IoT platforms today in within the IT and Automation Bachelor pro-
gram and the Industrial IT and Automation Master program, both for educational and
research purposes.

Dimension Four (https://dimensionfour.io), a local company in Grenland Norway has
developed a new IoT platform, which may be relevant to use by USN in the future. The
IoT platform uses MQTT and GraphQL.

To use this platform at USN, both in education and research, APIs and practical examples
need to be developed for different devices (PCs with DAQ devices from National Instru-
ments, Arduino, and Raspberry Pi) and programming platforms. The main programming
environments and programming languages at USN within the Bachelor/Master programs
mentioned above are Visual Studio/C#, Python, LabVIEW, and MatLAB.

9

GraphQL
Simplification API

Database
GraphQL

Simplification API
Datalogging
Application

GraphQL
Simplification API

Datalogging
Application

Datalogging
Application

DAQ

Python

C#

Arduino / C++

DAQ

DAQ

Python

C#

Arduino / C++

Libraries / APIs
Desktop Applications

Dimension Four
GraphQL

Monitoring
Application

Web Application

ASP.NET Core

Figure 1.1:

10

2 Internet of Things

Internet of Things is a concept which is at the forefront of the Industry 4.0 revolution. At
the core it is all about information, where ”things” either gather or acts upon obtained
information. ”Things” may do both the gathering and acting. A ”thing” refers to any
object which can gather or act, and is able to communicate with other ”things” [1].
Communication is often done over the internet, but may in some cases communicate
through other devices via Bluetooth or the like.

An example of Internet of Things may be a personal weather station with a monitoring
unit. The sensors may be connected together via WIFI, allowing you to observe the
local weather from the kitchen while brewing coffee. In addition to updating your local
monitoring unit, the sensors could communicate weather to a wider network. This would
all users of the same network to observe weather from your network connected sensors,
and visa versa.

Some pros of Internet of Things is that it encourages development of efficient architecture
and software, due to the miniature nature of devices. The efficient nature of said software
may in turn lead to a lower bar for entry into tinkering and tech development, increasing
tech-literacy. In addition to efficient software, the collection of data may in turn increase
the accuracy and efficiency of industrial processes, increasing productivity and lowering
costs. However, mass collection of data, especially concerning end-users, is a huge privacy
concern. Data is collected everywhere by everyone, and this data is often abused. While
Internet of Things may bring forth easy to access tech development tools and concepts, the
vast amount of IoT-devices may not encourage people without tech-interests to increase
their tech-literacy. This may decrease overall tech-literacy altogether.

2.1 MQTT

MQTT is an OASIS standard and has quickly become the de-facto IoT communications
protocol. It works on a simple publish/subscribe model, where publishers push messages
to a broker and subscribers retrieves gets said messages from the broker. Due to the
miniature nature of IoT, both space, processing power, and battery consumption was
taken into account when MQTT was designed [2].

11

2.2 REST

REST is often misinterpreted as a protocol, but is in fact an architectural style for de-
veloping web services and APIs [3]. The REST architecture is composed of guidelines for
system developments. These guidelines are designed to maximise scalability and modi-
fiability. Software and APIs developed using REST architecture are often referred to as
”RESTful” [4].

2.3 GraphQL

GraphQL is a query language which makes the creation of version-less APIs possible. It
was developed by the company formerly known as Facebook, now Meta, in 2012. In 2015,
GraphQL went open-source and is maintained by The GraphQL Foundation. GraphQL is
designed to make API creation easy and lightweight, where devices can request the specific
data they need from the back-end. Due to GraphQL being lightweight, it is commonly
used in IoT solutions [5].

2.4 ASP.NET Core

ASP.NET Core is an open-source extension of the .NET framework, for developing web
applications. Core aspects of ASP.NET are performance and cross-platform compatibility.
As with C# and the .NET framework, ASP.NET Core is developed and maintained by
Microsoft [6].

2.5 Thingspeak

Thingspeak is a platform designed as an IoT data-analytics solution. The platform allows
for easy visualization of live and/or cloud stored data. To make data analysis easy,
Thingspeak comes with MatLAB integration, allowing the user to pull data from the
Thingspeak cloud, to MatLAB. Thingspeak is made and maintained by MathWorks Inc,
the company behind MatLAB, as an easy solution in an ever growing IoT world [7].

12

2.6 Grafana

Grafana is an open-source application, which aims to unify data from independent sources
in an orderly fashion. Grafana can access data from the user’s choice of storage, be it
a database or a single board computer, like the ”Raspberry PI”. The application was
launched in 2014, and has been in continuous development since [8].

2.7 Github

Github is a cloud-based repository for tracking and maintaining software code. It allows
developers to develop code alongside other developers, on the same project [9]. Projects
may also be public, which means code is visible for everyone, or private, which means the
code is only visible for select individuals. Github gives developers oversight over project
code and version. A developer may choose to fork or branch code from a repository. This
means creating a duplicate project, where changes may be done without affecting main
project code. When changes doe to the duplicate is done, it may be merged together with
the original repository. This process then includes changes done to the duplicate in the
original repository.

2.8 IoT Maker Devices

Internet of Things is not only an industrial revolution, but has also promted the creation
of several hobbyist tools. These devices may not be designed for industrial use and
durability, but they make excellent tools for research and prototyping. Used in this
project for testing purposes are the micro-controller board, ”Arduino”, and the single
board computer, ”Raspberry PI”. These boards allow simple programming to interact
with physical hardware, such as temperature sensors, and to communicate with other
software, across WiFi and internet.

2.8.1 Arduino

Arduino is a brand of small single board micro-controllers, designed by a company in
Italy with the same name. The goal of the Arduino company is to empower individuals
to create electronically controlled creations and IoT devices. Arduinos are designed to
be easy to use, inexpensive and open-source, both in hardware and software. This allows
users to prototype, then remove non-essential components from production boards [10].

13

2.8.2 Raspberry PI

The Raspberry PI is a single board computer, running a custom made, lightweight, distri-
bution of Linux. The computer comes with a GPIO, which can be used to interface with
user designed electrical circuits and/or sensors [11]. It comes in different sizes, where the
smallest lack a GUI and must be accessed through another computer. The Raspberry
PI comes with several programming languages installed, the most popular and versatile
of which are Python. The relatively small size and computing power makes it a popular
choice as a base for IoT devices.

14

3 Programming Languages

Several programming languages has been a part of the development process for this pro-
ject. Python and C# has been actively used during development, while GraphQL is
the core of Dimension Four’s product. This section contains the reason for creation of
these languages, as well as their areas of use. While technically not a language, but a
framework, ASP.NET Core is described in this section as well.

3.1 Python

Python is an easy to learn, high-level programming language. It has simple syntax and
emphasizes code-readability. It is an interpreted language, which means it is translated
to machine code during execution. Because of this, there is no compilation stage, and
bug testing and fixing is therefore easier [12]. Python is open-source and the source code
is maintained by the Python Foundation. Due to the OSI-approved open-source license
which Python is licensed with, it is freely usable and distributable. The free distribution
extends to commercial use [13].

3.2 C#

C# is an object-oriented, open-source and cross-platform programming language. Due
to it being part of the C family of programming languages, it is similar to C, C++, and
Java, thus easy to pick up if you already know one of these. It is engineered to create
robust and durable applications, for the .NET framework. It was developed and released
by Microsoft in 2000, along with the .NET framework [14].

15

4 Dimension Four

Dimension Four AS is a tech-company from Grenland, Norway, and was established in
2018. Dimension Four saw a need for a developer friendly API, which removed the com-
plexity of working with an IoT back-end. Their goal is to develop a platform agnostic
back-end, where companies and their developers can choose the hardware they want or
need. In early 2021, Dimension Four launched their IoT platform [15].

4.1 GraphQL Solution

Dimension Four is a tech-company from Grenland, Norway, and is developing a GraphQL
API. The aim of the API is to be both fast and scalable, being easy for the front-end
to interact with. The API consists of ready-made levels of organization and functions
for inserting, organizing, and retrieving desired data. GraphQL can be interacted with
through HTTP and thus the Dimension Four API is indifferent to what device is sending
or retrieving information, given it presents user generated credentials. In addition to the
GraphQL API, Dimension Four runs an MQTT broker. The credentials for said broker
can be requested from the API.

4.1.1 Dimension Four Terminology

In their GraphQL Solution, Dimension Four has established several points of organization.
Spaces, Points, and Signals form the structure of which data is sorted. Spaces acts as
folders, while points and signals represents devices and measurements. Spaces can be
used to represent a general collection of other spaces or points, locations, or other features
points may have in common. As an example, a hierarchy of spaces may be ”Factory 01 -
Production Hall 04 - Process 02”. Since points represent devices, they are not allowed to
have sub-points. A point may be named ”TMP36 01”, if a system has one or more TMP36
temperature sensors. If a point is able to collect more than one type of measurement, the
type and unit is stored with the measured value in a signal. As with points, signals can
not have sub-signals. If a point / device is measuring several unit types at once, they are
to be stored as different signals, under the same point. Each space, point, and signal have
their own ID, which can be used to access information about it.

16

Figure 4.1: Tabs for organizing queries.

4.2 GraphQL Playground

Dimension Four’s GraphQL service can be accessed directly through a web-browser. Ac-
cessing the URL: ”iot.dimensionfour.io/graph”, loads a web-application the company have
named ”Playground”. Giving an overview of the playground, and starting at the top, there
are individual tabs for organizing sessions, in case the user needs to access the API with
different tenants and/or headers, or to organize their queries. Beneath this, a button for
prettifying the queries, showing history query, and a URL-bar, displaying the client URL.
Figure 4.1 depicts these UI elements.

Beneath this, the application is split into a left- and right-hand side. The left-hand side is
for querying the API, while the right-hand side displays the API response. The left-hand,
query side, contains a large field with paginated lines, used for the actual queries. This
field can contain multiple queries, if needed. This field is depicted by figure 4.2. In the
bottom of the left-hand side, is two tabs, query variables and HTTP headers. The query
variables tab is used to store variables for querying, like space IDs or point IDs. Variables
which are often used, but hard to remember. The second tab, HTTP headers, is used to
send credentials, like tenant ID and tenant key. This area is depicted by figure 4.1.

In the middle of the web-application, between the query-field and the response-display,
sits a ”play button”. This button is used to send the queries in the query-field to the API.
If there are multiple queries in the query-field, a list of the queries are shown, and the
user is asked to select one. The selected query is then sent to the API. The field on the
right-hand shows responses from the GraphQL API when queried. This field along with
a response is depicted by figure 4.4. Finally, on the far-right edge of the web-application,
there are two tabs containing guides and templates for queries, if this is needed.

17

Figure 4.2: Paginated text field for querying, with query.

Figure 4.3: Headers for proving authority.

Figure 4.4: Response field with response from Create Space query.

18

5 Development

This chapter concerns the planning and development of Python and Arduino Librar-
ies/APIs, as well as the monitoring web-application. It is divided into sub-chapters,
starting with 5.1, then continuing with the development in the order the different project
parts were developed. First 5.2, then 5.3, ending on 5.4.

5.1 Planning

The development of this project has gone through the phases of Unified process, where
each individual part is planned and developed in its own iteration. The inception of the
project came from the University of Southeastern Norway’s desire to use locally developed
IoT tools. From this, several uses were elaborated upon, such as which programming
languages needed an easy way to access this tool. As one of the first steps during planning,
a system sketch was drawn. Figure 1.1 depicts the system sketch. To keep track of planned
features of the different libraries, UML class diagrams were to be created for each library.
UML diagrams were only created for the Python Library, while the rest of the project were
planned using a Kanban Board. The following programming language sections appear in
the order they were developed. To organize code, a GitHub repository was established
and is available at: ”https://github.com/USN-Helgesen/df-api-and-monitor”.

5.2 Python Development

While planning the Python library, seven functions were drawn up in a UML class dia-
gram. These were functions for creating spaces, points, and signals, as well as listing
these, and a final one for retrieving the latest signal from a specific point. These seven
functions were then added to the main script of the library, ready to be developed. Each
of these functions contain a string called ”query”, which contains the GraphQL query
for the Dimension Four back-end, and a Python dictionary called ”json”. This dictionary
consists of the ”query” string and the variables sent to the function.

The first developed function was ”create_space”, which is used to create spaces in the
back-end. To send the create space query to Dimension Four, an eighth function was

19

created. ”send_post” is taken from the Dimension Four’s example. This function receives
the target domain, json, and headers as inputs and sends a request to the target. It
was shaven down to prevent it from printing the received data to the terminal, and
returns the data to the call instead. During the initial testing of the ”create_space”
function, permission denial became a problem. The tenant token which was established
for development purposes had every administrative permission, yet the back-end denied
the creation of a space. This was an internal error at Dimension Four, which was fixed in
a matter of days. This was the only major hurdle during the Python library development.
Figure 5.1 depicts the Create Space function, which adheres to the general structure of
all query functions. The query string is defined, then combined with variables to create
a query object in the ”json” variable. The query object is then sent along with the
target and headers, to the Send Post function, figure 5.3. The target variable passed
through the function is a string variable equal to the Dimension Four playground URL,
”https://iot.dimensionfour.io/graph”. The Send Post function, inspired by Dimension
Four’s example [16], sends the query object as an HTTP request to the target, with the
headers credentials, and check for any bad requests or other problems. If the query was
successful, it returns the query object.

20

Figure 5.1: The Create Space function in Python.

Figure 5.2: How to remove unnecessary syntax from a dictionary.

21

Figure 5.3: Sending Posts with Python.

22

During the development and testing of the initial seven functions, a ninth function for
creating a header dictionary was created to cut down on the use of dictionaries. Py-
thon dictionaries share a common structure with json. This ”create_header”, figure 5.4,
function takes the tenant ID string and the tenant token string as inputs, and returns a
header dictionary. The ”retrieve_latest_signal” function contains an additional Boolean,
which is false by default. This feature is developed to alter the returned data. A signal
return query from Dimension Four is very unwieldy, as shown by figure 4.4 and is thus
de-nestled to a list containing the data value and timestamp. If the full query is desired,
simply turn this Boolean true. Figure 5.2 depicts the process of de-nestling the query.
The final function planned and created was the ”save_data” function. This simply takes
the data and saves it as either a .csv or .json file. The final step of the development pro-
cess is uploading the project to PYPI. Doing this allows for the installation of the library
through the Python package manager, ”pip”. Most guides were somewhat outdated and
the setuptools web-page was hard to read. The overall process is not too advanced. The
first step is to pip install ”setuptools”, which is used while creating a ”setup.py” file for
the project. The setup.py script is used to structure metadata about the package, like
the name, author and version. Two additional files are required to build the package:
”__init__.py”, which can be empty, and ”pyproject.toml”, which is needed to select the
desired build tool.

The second package needed to be pip installed is ”build”. When this is installed, change
directory to where the setup.py file is located. Then type ”py -m build” to build the
package. When the building is finished, two additional files are created: a ”.tar.gz” and a
”.whl”. These files are the ones being uploaded to PYPI. This is the final steps of getting
the package available on pip. First, register a user on PYPI.org. This user is needed
when uploading the package. Next, pip install ”twine”. Twine is used to upload to PYPI.
When in the same directory as setup.py, execute ”twine upload dist/*” in the terminal.
When requested, enter your PYPI username and password. If successful, the package
should now be installable with pip install. The Dimension Four API are now installable

Figure 5.4: The Python Create Headers function.

23

Figure 5.5: A function for saving data.

with ”pip install dfapi”.

24

5.3 Arduino Development

As the Arduino is a programmable single-board micro-controller with very limited memory,
the Arduino-Library should be short and contain only needed functions. Organizing quer-
ies, such as creating points or spaces, and listing these, are less useful for a device which
is mostly used for data gathering or system controlling. From the planning phase, three
core functions were deemed necessary. A function for retrieving signals, a function for
posting signals, and functionality to query the Dimension Four GraphQL back-end.

The first development iteration concerned the retrieving signals function. The function
started as a test of the Dimension Four Opla example. It is a simple example, using the
WifiClient and ArduinoHttpClient libraries to send HTTP requests. The first hurdle of
turning said example into a library function, was passing the HTTP-client and Serial from
the main sketch to the library. As seen in figure 5.6, references for a serial stream and
HTTP client is created under the private section. Then, these are passed to the library in
the InitStream function, depicted by figure 5.7. The second iteration of the development
phase concerned the posting function. As most of the difficulties had been overcome in
the first iteration, the posting function was made by modifying the example given by
Dimension four [16], changing the GraphQL query and adding necessary variables to the
request. Figure 5.8 depicts the first half of the read function, where the query string and
variables are combined into a query object. Figure 5.9 illustrates further, where the query
object is serialized and sent to Dimension Four. The Arduino Library was tested on both
an Arduino MKR 1010 and an Arduino Uno WiFi. However, when tested with several
regular Arduino Unos using an Ethernet shield, the sketch did not run properly. The
sketch would compile and upload to the device, but the Arduino would freeze at random
steps in the startup function.

Figure 5.6: The Arduino Library Header file.

25

Figure 5.7: Passing Clients and Serials to an Arduino Library.

Figure 5.8: Establishing the query object in the Arduino Library.

26

Figure 5.9: Serializing and posting the query object to Dimension Four.

5.4 C# Development

The ASP.NET web application is the project’s monitoring software. The main aspect of
the web application is to display information from Dimension Four in an orderly fashion,
thus retrieving queries are deemed most important during planning. Planned features
for the application are: retrieve spaces and list them, order the spaces and sub-spaces
accordingly in said list, display information about single spaces, such as name, ID, sub-
spaces and points, display retrieved signals from specific point in a graph, display multiple
graphs, create space, create, point, create signal.

The first iteration of the ASP.NET development phase, concerned the retrieval of spaces,
as well as listing these with their points. There is not a lot of easily accessible information
on querying a GraphQL back-end from ASP.NET, and a lot of the information concerns
the creation of a GraphQL back-end. Most of these use GraphQL libraries from the
NuGet package manager. After some research, a solution, given by Mauro Petrini [17], on
YouTube. A simple query using HTTP requests and Newtonsoft serializer. The tenant
token and key were easily added to the HTTP client in the startup class.

To make sure the code was structured in an orderly fashion, all code concerning the
querying of the GraphQL back-end were placed in the same class. As queries became
useful, functions for sending these to Dimension Four, were developed on the go. To
organize and store the responses from Dimension Four, individual classes for Spaces,

27

Figure 5.10: The Space class, it’s properties, and the first half of the instancing function. It prepares
sub-spaces, in case the space is a parent.

Points, and Signals were established. These classes are represented by figures 5.10, 5.11,
5.12, and 5.13. These objects had variables and functions added as the functionality of
the software increased. As an example, spaces were originally developed with two strings
and a list of points, but as functionality grew, a list for sub-spaces were added too.

28

Figure 5.11: This figure depicts the second half of the Space class’ instancing function. It prepares the
list of points belonging to the space.

29

Figure 5.12: This is the Point class..

30

Figure 5.13: This depicts the Signal class.

31

The first Razor-page to be developed, were the display for spaces and their points. The
list was animated with AJAX and javascript, so when a space were clicked, the list
would display the space’s points. Clicking a point would redirect the page to a display
for a point’s signals. The first iteration of the spaces-list were functional, but deemed
unorganized, as it did not order sub-spaces under their respective parents.

Thus, a recursive list was proposed and implemented. A list of spaces were added to
the Space class, while the list were created with Razor syntax on the page. Points were
moved out of the list, into its separate display on the right-hand side of the page. Double-
clicking a space would now bring to to the Signal display, to make the display of signals
from related points easier.

The Points-list is updated using requests to the C# back-end via AJAX. The back-end
of the page is represented by figure 5.14, while figure 5.15 and 5.16 represents the HTML
and javascript of the front-end. The function in figure 5.16 uses an AJAX request to
request the points belonging to particular space. On a successful request, the points are
sorted alphabetically and stored in a HTML list.

32

Figure 5.14: This is the Space List back-end.

33

Figure 5.15: This depicts the HTML and javascript behind the Space List Razor-page.

34

Figure 5.16: This is the javascript function for partial update of the points list.

35

The second Razor-page to be developed, were the Signal display. This page uses the
Google Charts web-service to draw and display data. The first iteration sent a static
paginate, type and point-id to the C# back-end, which in turn queried the GraphQL
API. The response were then used to redraw the signals on the Google chart. This was
done as a proof of concept, and the next step was to repeat the process, to get a continually
updating display of data. When the graph was fully functional, user specified parameters
needed to be implemented, such as signal-type, number of signals to display and which
point the signals are related to. The paginate was designed as a drop-down menu with
a value of 5 to 100, in increments of 5. Signal-type and point-id was text-boxes. The
point-id box would auto-fill if redirected from a point in the space list. To increase the
user-experience of the software, these were changed to lists, as memorizing point-id and
relating types were deemed infeasible. The graph is now accessible through each space,
and the space’s points are listed in a drop-down menu. To handle signal-types, types are
added to point metadata. The metadata is fetched, the types are extracted and displayed
in a drop-down menu. Finally a checkbox is added to make the graph auto update.
Figure 5.17 is the Signal Display back-end. Figure 5.18, is the javascript responsible for
drawing the initial shape of the graph, lines, size, labels, etc. Figure 5.19, is responsible
for redrawing the data in the graph, and does so by requesting data from the C# back-end
via AJAX requests.

36

Figure 5.17: This figure depicts the back-end of the Signal Display.

37

Figure 5.18: This is the javascript code responsible for initially drawing the plot.

38

Figure 5.19: This is the javascript function responsible for redrawing the plot with new data.

39

The final Razor-page of the web-application is the administration page. This page is
used to create or delete spaces, sub-spaces and points, or add and remove point types
from the metadata. The page contains a drop-down menu, which is used to select the
desired action. Selecting an action then reveals hidden HTML with action-related inputs.
Selecting a different action hides the HTML and reveals the HTML relating to the newly
selected action. All actions work on the same principle: on a button click, the page takes
data from the relating text-boxes, drop-down menus, and labels, and sends a request
to the C# back-end. In turn, the C# back-end queries the GraphQL API. Figure 5.20
depicts the structure of the administration page back-end, including several functions.
These functions are triggered via AJAX requests from the front-end. Figure 5.21 depicts
the HTML relating to the first two administrative actions, Create Space and Create
Sub-Space. Figure 5.22 is the javascript and AJAX belonging to these actions. Every
administrative action has it’s own javascript function and AJAX request.

Up until this point in the development, the tenant ID and tenant key used for authentica-
tion at Dimension Four has been initiated in the web application setup.cs file. This means
the end-user have to modify the source code of the web app to access their stored spaces,
points, and signals. To increase UX, session variables was added to store the ID and key
for use with the HTTP client. The index page of the web application was modified with
inputs for ID and key, allowing the end-user to declare their own credentials. Figure 5.23
depicts the back-end of the Index page, where the user submitted API credentials are
declared as session variables. Figure 5.24 is the javascript and AJAX request responsible
of transporting the API credentials from the front-end to the back-end.

40

Figure 5.20: This figure represents the back-end of the Admin Page.

41

Figure 5.21: This is the HTML of the first two administrative actions, as well as the action selector.

42

Figure 5.22: This is the javascript behind the first two administrative actions, Create Space and Create
Sub-Space.

43

Figure 5.23: The back-end of the Index page.

44

Figure 5.24: This is the javascript for declaring API credentials.

45

6 Python Library

The Python Library works on a simple premise of sending json strings to the GraphQL
playground, via its URL. The json string contains several pieces of data, such as the query,
data values such as strings and integers, and the header. The query is specific for each type
of request. The query is itself in a json format, and is the command or function which the
GraphQL playground is to execute. The data values in the json string are automatically
placed in the query. The header contains the tenant id and tenant token, which determines
your privileges for reading and writing data. The Python Library contains 10 functions,
9 of which are designed to be used by the user, while the last is used by all the other
functions to send HTTP requests to Dimension Four.

The first function of the library is the ”create_header” function. This function takes the
tenant ID and tenant key as string parameters, and returns it as a dictionary structure.
This structure is used by all functions which requests data from Dimension Four. The
second and third functions are ”create_space” and ”create_point” respectively. Create
Space takes a user defined space name in the form of a string, along with a header
dictionary and the Dimension Four playground URL, and establishes a new space. Create
Point takes a point name and the space ID of the parent space, as strings, the target URL
and the headers, and establishes a point.

Function four, ”create_signal”, creates a new signal under a point. It takes seven vari-
ables, value, unit, signal_type, timestamp, point_id, and target, which are all strings,
and headers, which is a dictionary. The function combines the five first variables with a
GraphQL query, and sends an HTTP request to the target, along with the header.

Function five, six, and seven are all used for listing spaces, points, and signals. These
are ”list_spaces”, ”list_point”, and ”list_signals respectively. The List Spaces function
lists all spaces available to the user, while the List Points function lists all points and
their parent spaces. Both of these function takes two variables, the target string and the
header dictionary. List Signals lists the latest 100 signals in a point. This function takes
a point ID string, a target string and a header dictionary as variables.

Function eight, ”retrieve_latest_signal”, is used to retrieve the values from the latest
signal in a point. This function takes four variables. The first is a string of the point id,
the next the target URL string. Thirdly, the header dictionary. The fourth variable is a
boolean for returning a dictionary structure of the signal.

46

Function nine is a simple save function. ”save_data” takes two variables, the data to-be-
saved as a string, and a boolean to decide save format. The user may choose to save as
either a .csv or .json, depending on if they want to save dictionary structures.

Function ten, ”send_post” is a posting function, used by other functions to send HTTP
requests to Dimension Four. it takes three variables: target URL string, the query object,
and the header dictionary. It sends the request and waits for the response. It will catch
exceptions arising from bad requests.

6.1 Python Examples

To aid with visualizing the use cases for the Python library, several examples is provided.
The first example is a continuous posting Python script. This example takes a random
number between 273 and 300, and creates a signal in a specified point. The second script
is a simple read function, which reads a value every 10 seconds. The third example creates
a space, while the fourth illustrates a saving function. The fifth and final example in the
example file is logger, which draws a pyplot of the last 100 signals i a point. All these
examples may be found in the GitHub repository mentioned in 5.1.

47

7 Arduino Library

The Arduino Library is lighter in functions than the Python Library, due to the size
limitation of Arduino memory. Due to unidentified problems, the library will only function
on the Arduino Uno WiFi rev.2 or the MKR series of Arduinos. When using the library,
”SPI.h”, ”WiFiNINA.h”, ”ArduinoJson.h”, and ”ArduinoHttpClient.h” must be included,
in order for it to function properly. An instance of the library is then simply created. To
illustrate, it can be instantiated like this: ”DimensionFourApi dfour;”. This creates an
instance named ”dfour”.

The library contains 3 functions, one for setup, one for sending, and one for receiving
signals. The setup function is called ”initStream” and is used to pass the Serial and
HTTP client to the library. This function must always be performed, in order for the
library to query the Dimension Four GraphQL API. To illustrate the use of this function,
in a system where the library has been instatiated as ”dfour”, the serial as ”Serial”, and the
HTTP client as ”client”, call the function like this: ”dfour.initStream(&Serial, &client);”.
The second function would then be called as: ”dfour.ReadLatestSignal(pointId, tenantId,
tenantKey, server);”, where the non-obvious server is the Dimension Four playground
URL: ”iot.dimensionfour.io”. All inputs are strings. This function queries the GraphQL
API for the latest value in a point and returns a float. Following the examples of the two
previous functions, the third function is called by: ”dfour.PostSignal(signal, timestamp,
pointId, tenantId, tenantKey, server)”. Inputs shared with the read functions are the
same, while signal is a float representing a measured value, and timestamp is a string of
the time of creation for said signal. Examples using the library, along with the library
itself can be found in the github.com repository linked to in chapter 5.1.

48

8 ASP.net Web-Application

Upon accessing the ASP.net web-application, the index page asks for Dimension Four
credentials. The index is displayed in figure 8.1. How to get these credentials are explained
in chapter 4.2. The tenant must have sufficient permissions to perform all actions through
the web-application. The main functions of the web-app are accessed through ”Admin
Panel” and ”Spaces” on the header-bar. Upon accessing the Admin Panel, the user is
shown a drop-down menu. This menu contains the seven administrative actions of the
web-application. These are: Create Space, Create Sub-Space, Delete Space, Create Point,
Add Point Signal Type, Remove Point Signal Type, Delete Point.

When selecting Create Space, the user will be asked to enter a name for the space-to-be-
made. When the name text-box is filled, the user clicks the ”Create” button to create the
space. This creates a new top-level space. Figure 8.5 shows the display for this action.
To create a sub-space, select the Create Sub-Space action. To perform this action, a user
is asked to name the space, and select a parent space from the recursive list on the right-
hand side. The web-application notifies the user of the currently selected parent space.
Once the name-box and a parent space has been selected, the user can create a sub-space
with the ”Create” button. Figure 8.6 depicts this display. Should the user wish to delete
a space for any reason, they can use the Delete Space action. The Delete Space action
requires the user to select a space from a list, like in the previous action. Select a space
from the recursive list, displaying both top-level spaces and sub-spaces. The currently
selected space is displayed, to avoid undesired deletion of spaces. Once a space is selected,
the user may delete it with the ”Delete” button. Figure 8.7 depicts the display for this
action.

Should the user wish to create a point, they can use the Create Point action. Once
selected, they are asked to fill in a name for the point, and select a parent space from the
right-hand side list. To create the point, press the ”Create” button. Figure 8.8 depicts
this display. To delete a point, select the Delete Point action. Select the parent space of
the point in the right-hand list, then select the point-to-be-deleted from the drop-down
menu on the left. Click the ”Delete” button to delete the point. Figure 8.11 depicts this
action. Signal types used within a point are stored in the point metadata. To add a
signal type to a point, select the Add Point Signal Type. The user then selects the point’s
parent space on the right-hand list, then the point in the drop-down menu, then enter
the signal type in the text-box. Then use the ”Add” button to add the signal type to
the point metadata. Figure 8.9 depicts this display. To remove a signal type from the

49

Figure 8.1: This is the Index page of the web-app. This is where the user presents their API credentials.

metadata, select the Remove Point Signal Type action. Select the parent space from the
spaces list, then the point from the points drop-down menu. Finally, select the signal
type to remove, then use the ”Remove” button. Figure 8.10 depicts the user interface for
this action.

To use the monitoring functions of the web-application, click on ”Spaces” on the header-
bar. This redirects the user to a page displaying spaces and points. When a space is
clicked, the list reveals the space’s sub-spaces, and the space’s points are listed in the
points list. This user interface is depicted by figure 8.2. To display the signals belonging
to a space and its respective points, double-click the space in the list. This redirects the
user to the graphical display for signals. To plot the signals, select a point, signal type,
and the number of signals to display, then tick the update plot checkbox. Leaving the
checkbox checked will redraw the plot every second. Any new signal uploaded to the point
will then be displayed. Point and signal type can be changed during use and will be used
on the next redrawing of the graph. Figure 8.3 represents this display.

50

Figure 8.2: This is the Space List page of the web-app. Select a space to display points and signals.

51

Figure 8.3: This is the Signal Display page. Here the user may choose points and signal types to display
from.

52

Figure 8.4: This is the initial Administration page. The user may select an action to perform from the
list.

Figure 8.5: This is the Create Space action page.

53

Figure 8.6: This is the Create Sub-Space action page. The user may select a parent space from the right-
hand list.

Figure 8.7: This is the Delete Space action page.

54

Figure 8.8: This is the Create Point action page. The user may select a parent space from the right-hand
list.

Figure 8.9: This is the Add Signal Type action page.

55

Figure 8.10: This is the Remove Signal Type action page.

Figure 8.11: This is the Delete Point action page.

56

9 Discussion

The project objective of eliminating the need for GraphQL query knowledge, has been
sufficiently completed. The Python Library contains functions for the most important
use cases, allowing it to be used as an administrative tool, for creating spaces and points,
as well as being deployed in Python based data acquisition units or data processors. The
Python Library is open-source and available at the github repository listed in chapter 5.1.
In addition to this, the library has been deployed to PYPI, and thus is available through
Python’s package manager, PIP, as dfapi.

The Arduino Library has all planned functionality, however, it will only work with newer
models which has more memory than the Arduino Uno. This result is sub-par with the
planned feature of being universal, but it is functional nonetheless. The Arduino Library’s
two use case functions are both operational, allowing for the creation of Arduino-based
IoT DAQ units. The creation of read/write interaction with the Dimension Four API has
been sufficiently streamlined.

Being the biggest part of the project, the ASP.net Core web-application contains all
planned features. All administrative functions, as well as displays are fully operational,
and ready for limited operations. The web-application lacks action response feedback to
the user, which means it does not notify the user of the outcomes of different adminis-
trative actions. This may be rolled out in a later iteration of the application.

The report documents the planning and development of APIs/Libraries for Python and
Arduino, and a web-application used for monitoring and administration. The report
contains, descriptions of essential themes, sources, detailed walk-throughs of development,
and illustrations to aid with explanations. The report follows a natural breakdown of the
development cycle. The report sufficiently documents the project and its development.

57

10 Conclusion

Data collection, processing and storage are ever-increasing with industry 4.0. Good solu-
tions for data handling are being developed, but may not be accessible for all potential
users. This project intended to make a GraphQL API and storage solution more access-
ible, and has done so. The project has made the solution accessible to Python developers
and ”Makers”, who are inexperienced with GraphQL, but are in need of a data processing
solution for their IoT projects.

The Python Library is designed in such away, that even inexperienced Python-programmers
without extensive knowledge of dictionaries, json, or GraphQL, may take full advantage
of Dimension Four’s service. Be it for structuring spaces or establishing points, or log or
request signals. Should the need arise, it can even save signals as a .csv or .json. While
the Arduino Library lacks any administrative functions, it is functional for creating DAQ-
or controller-units, without any prior knowledge of json or GraphQL. Though it is not
functioning with the popular Arduino Uno, it works well with WiFi enabled devices with
more memory.

The ASP.net web-application supports an array of different user actions and displays.
Any user may now run this application and access Dimension Four’s service, given they
have valid credentials. The application gives a good overview of spaces and points, and
allows users to monitor logged data. It is now ready for limited public use. Further
development may include stress-testing, bug-hunting, security probing, development of
a unique style sheet, and making existing code more efficient. Anyone wanting to use
Dimension Four’s GraphQL API, including the University of South-Eastern Norway, is
now able to use Dimension Four’s product.

58

Bibliography

[1] A. S. Gillis. ‘What is iot (internet of things) and how does it work?’ (2021), [Online].
Available: https://internetofthingsagenda.techtarget.com/definition/
Internet-of-Things-IoT.

[2] ‘Mqtt version 5.0.’ (2019), [Online]. Available: https://docs.oasis-open.org/
mqtt/mqtt/v5.0/mqtt-v5.0.html.

[3] I. Hübschmann. ‘A complete guide to rest apis in iot.’ (2021), [Online]. Available:
https://www.nabto.com/rest-api-iot-guide/.

[4] A. Keranen, M. Kovatsch and K. Hartke. ‘Restful design for internet of things sys-
tems.’ (2017), [Online]. Available: https://tools.ietf.org/id/draft-keranen-
t2trg-rest-iot-05.html.

[5] ‘Graphql | a query language for your api.’ (2022), [Online]. Available: https://
graphql.org/.

[6] ‘What is asp.net core? | .net.’ (2022), [Online]. Available: https://dotnet.microsoft.
com/en-us/learn/aspnet/what-is-aspnet-core.

[7] ‘Learn more - thingspeak iot.’ (2022), [Online]. Available: https://thingspeak.
com/pages/learn_more.

[8] ‘Grafana features | grafana labs.’ (2022), [Online]. Available: https://grafana.
com/grafana/?plcmt=footer.

[9] ‘What is github? a beginner’s introduction to github.’ (2021), [Online]. Available:
https://kinsta.com/knowledgebase/what-is-github/.

[10] ‘What is arduino? | arduino.’ (2018), [Online]. Available: https://www.arduino.
cc/en/Guide/Introduction.

[11] ‘Raspberry pi foundation - about us.’ (2022), [Online]. Available: https://www.
raspberrypi.org/about/.

[12] ‘What is python? executive summary | python.org.’ (2022), [Online]. Available:
https://www.python.org/doc/essays/blurb/.

[13] ‘About python tm | python.org.’ (2022), [Online]. Available: https://www.python.
org/about/.

[14] ‘A tour of c# - c# guide | microsoft docs.’ (2021), [Online]. Available: https :
//docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/.

59

https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://www.nabto.com/rest-api-iot-guide/
https://tools.ietf.org/id/draft-keranen-t2trg-rest-iot-05.html
https://tools.ietf.org/id/draft-keranen-t2trg-rest-iot-05.html
https://graphql.org/
https://graphql.org/
https://dotnet.microsoft.com/en-us/learn/aspnet/what-is-aspnet-core
https://dotnet.microsoft.com/en-us/learn/aspnet/what-is-aspnet-core
https://thingspeak.com/pages/learn_more
https://thingspeak.com/pages/learn_more
https://grafana.com/grafana/?plcmt=footer
https://grafana.com/grafana/?plcmt=footer
https://kinsta.com/knowledgebase/what-is-github/
https://www.arduino.cc/en/Guide/Introduction
https://www.arduino.cc/en/Guide/Introduction
https://www.raspberrypi.org/about/
https://www.raspberrypi.org/about/
https://www.python.org/doc/essays/blurb/
https://www.python.org/about/
https://www.python.org/about/
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/

[15] ‘Home | dimension four.’ (2021), [Online]. Available: https://dimensionfour.io/.
[16] ‘Http (json) | d4 docs.’ (2022), [Online]. Available: https://docs.dimensionfour.

io/getting-started/http.
[17] ‘Call github graphql api using c#.’ (2019), [Online]. Available: https : / / www .

youtube.com/watch?v=xSU1Sr_eYOQ.

60

https://dimensionfour.io/
https://docs.dimensionfour.io/getting-started/http
https://docs.dimensionfour.io/getting-started/http
https://www.youtube.com/watch?v=xSU1Sr_eYOQ
https://www.youtube.com/watch?v=xSU1Sr_eYOQ

Appendix A

Project Description

Appendix A is the Project Description for this project. It includes the background for the
project, as well as a set of key tasks. The Project Description lays down certain practical
arrangements, entitled supervision time and the like.

61

Faculty of Technology, Natural Sciences and Maritime Sciences, Campus Porsgrunn

FMH606 Master's Thesis

Title: Development of Open Source Datalogging and Monitoring Resources for IoT Platform

USN supervisor: Hans-Petter Halvorsen

External partner: Dimension Four

Task background:

USN uses different IoT platforms today in within the IT and Automation Bachelor program
and the Industrial IT and Automation Master program, both for educational and research
purposes.

Dimension Four (https://dimensionfour.io), a local company in Grenland Norway has
developed a new IoT platform, which may be relevant to use by USN in the future. The IoT
platform uses MQTT and GraphQL.

To use this platform at USN, both in education and research, APIs and practical examples
need to be developed for different devices (PCs with DAQ devices from National
Instruments, Arduino, and Raspberry Pi) and programming platforms. The main
programming environments and programming languages at USN within the Bachelor/Master
programs mentioned above are Visual Studio/C#, Python, LabVIEW, and MATLAB.

Task description:

In this project the following activities should be performed:
• Give an overview of existing IoT solutions for Datalogging and Monitoring. Azure and

ThingSpeak are platforms used by USN today, but there exist many others that may
be relevant to use in the future.

• Give an overview of different standards and protocols within IoT and compare and
discuss advantages and disadvantages, some examples are REST, MQTT, and
GraphQL. Industrial protocols like OPC UA are also relevant to use.

• Discuss especially Data Security issues within the different platforms and protocols
• Give an overview of the Dimension Four IoT platform and their existing API. Make a

detailed list of pros and cons and suggest a list of improvements and give examples
how these can be implemented.

• Development of APIs and practical examples that communicates with the Dimension
Four IoT platform, both datalogging (publishing data) and monitoring/visualization
(retrieving data) of data for the programming platforms Visual Studio/C#, Python,
LabVIEW, and MATLAB. Julia may also be an alternative, as well as ASP.NET Web
Applications for presentation of data.

• The APIs and the practical examples should be tested out on different devices such as
standard Windows PC with different DAQ devices from National Instruments,
Arduino, and Raspberry Pi.

o Arduino: An open-source (GitHub) Arduino Library should be part of the
solution

o Raspberry Pi: An open-source (GitHub) Python Library should be part of the
solution

o Visual Studio/C#: An open-source (GitHub) Nuget package should be part of
the solution

o LabVIEW: Open-source (GitHub) distribution via VI package Manager (VIPM)
• The APIs and the practical examples need to be investigated, tested, and explored

thorough on practical applications within Home Automation and Industrial
Applications. Here should also data analysis and presentation be in focus, e.g.,
Machine Learning.

• Compare and discuss the different IoT platforms and their features, advantages and
disadvantages and suitable applications for the different IoT platforms.

• The APIs and the practical examples should be open source and should be available
at GitHub.

• The different APIs and the practical examples need to be documented properly both
as written documents (e.g., in GitHub), but also in form of videos available on
YouTube.

Student category: IIA, both campus and online, but also for industry master students that
want to take a project outside their own company.

The task is suitable for online students (not present at the campus): Yes. All work can be
done online.

Practical arrangements:

Necessary resources and help will be provided by Dimension Four.

External partner (Dimension Four) will be responsible for providing a sensor for the project
that will grade the work in collaboration with the supervisor from USN.

The resulting report should be public available.

Supervision:

As a general rule, the student is entitled to 15-20 hours of supervision. This includes
necessary time for the supervisor to prepare for supervision meetings (reading material to
be discussed, etc).

Signatures:

Supervisor (date and signature):

Student (write clearly in all capitalized letters):

Student (date and signature):

Appendix B

Gantt Diagram

The Gantt Diagram has been the main system for estimating work load and deadlines.
The following appendix contains four pages of important tasks and their time-frames.

64

ID Task
Mode

Task Name Duration Start Finish Predecessors

1 Write Report 88 days? Mon 17.01.22Wed 18.05.22
2 Format Report 7 days Mon 17.01.22Tue 25.01.22
3 Write IoT Chapter 55 days? Mon 17.01.22Fri 01.04.22
4 Write IoT Section 1 day Mon 17.01.22Mon 17.01.22
5 Write MQTT Section 14 days Mon 17.01.22Thu 03.02.22
6 Write REST Section 5 days Mon 24.01.22Fri 28.01.22
7 Write GraphQL Section 14 days Mon 17.01.22Thu 03.02.22
8 Write ASP.NET Core

Section
6 days Thu 03.02.22 Thu 10.02.22

9 Write Thingspeak
Section

10 days Mon
21.03.22

Fri 01.04.22

10 Write Grafana Section 10 days Mon 21.03.22Fri 01.04.22
11 Write IoT Maker

Devices Section
11 days? Fri 04.02.22 Fri 18.02.22

12 Write IoT Maker
Devices Section

11 days Fri 04.02.22 Fri 18.02.22

13 Write Arduino
Subsection

6 days Fri 11.02.22 Fri 18.02.22

14 Write Raspberry PI
Subsection

6 days Fri 11.02.22 Fri 18.02.22

15 Write Programming
Language Chapter

14 days Mon
24.01.22

Thu
10.02.22

16 Write Python Section 14 days Mon 24.01.22Thu 10.02.22
17 Write C# Section 14 days Mon 24.01.22Thu 10.02.22
18 Write Dimension Four

Chapter
11 days? Fri 04.02.22 Fri 18.02.22

19 Write Dimension Four
Chapter

11 days Fri 04.02.22 Fri 18.02.22

20 Write GraphQL Solution
Section

11 days Fri 04.02.22 Fri 18.02.22

21 Write GraphQL
Solution Subsection

5 days Fri 04.02.22 Thu 10.02.22

22 Write Dimension Four
Terminology
Subsection

11 days Fri 04.02.22 Fri 18.02.22

23 Write GraphQL
Playground Section

11 days Fri 04.02.22 Fri 18.02.22

Task

Split

Milestone

Summary

Project Summary

Inactive Task

Inactive Milestone

Inactive Summary

Manual Task

Duration-only

Manual Summary Rollup

Manual Summary

Start-only

Finish-only

External Tasks

External Milestone

Deadline

Progress

Manual Progress

Page 1

Project: D4-API
Date: Tue 17.05.22

ID Task
Mode

Task Name Duration Start Finish Predecessors

24 Write Development
Chapter

82 days Mon
24.01.22

Tue
17.05.22

25 Write Planning Section 25 days Mon
24.01.22

Fri 25.02.22

26 Write Python
Development Section

45 days Mon
24.01.22

Fri 25.03.22

27 Write Arduino
Development Section

15 days Mon
21.03.22

Fri 08.04.22

28 Write C# Development
Section

27 days Mon
11.04.22

Tue 17.05.22

29 Write Chapters about
Finished Product

42 days Mon
21.03.22

Tue
17.05.22

30 Write Python Library
Manual

10 days Mon
21.03.22

Fri 01.04.22

31 Write Arduino Library
Manual

5 days Mon
11.04.22

Fri 15.04.22

32 Write Web-Application
Manual

12 days Mon
02.05.22

Tue 17.05.22

33 Write Discussion Chapter 12 days Mon 02.05.22Tue 17.05.22
34 Write Conclusion Chapter 12 days Mon 02.05.22Tue 17.05.22
35 Write Preface 12 days Mon 02.05.22Tue 17.05.22
36 Write Summary 12 days Mon 02.05.22Tue 17.05.22
37 General Report Structuring 17 days Mon 25.04.22Tue 17.05.22
38 Programming 82 days Mon 17.01.22Tue 10.05.22
39 Create Github Repository 0 days Mon 17.01.22Mon 17.01.22
40 Register D4 User 0 days Mon 17.01.22Mon 17.01.22
41 Experiment With Python

and D4
10 days Mon

17.01.22
Fri 28.01.22

42 Draw System Sketch 1 day Mon 24.01.22Mon 24.01.22
43 System Planning Python 3 days Wed 19.01.22Fri 21.01.22
44 Define Requirements 3 days Wed 19.01.22Fri 21.01.22
45 Draw UML Diagrams 3 days Wed 19.01.22Fri 21.01.22
46 Program Python 45 days Mon 17.01.22Fri 18.03.22
47 Develop Create Space

Function
5 days Mon

17.01.22
Fri 21.01.22

Task

Split

Milestone

Summary

Project Summary

Inactive Task

Inactive Milestone

Inactive Summary

Manual Task

Duration-only

Manual Summary Rollup

Manual Summary

Start-only

Finish-only

External Tasks

External Milestone

Deadline

Progress

Manual Progress

Page 2

Project: D4-API
Date: Tue 17.05.22

ID Task
Mode

Task Name Duration Start Finish Predecessors

48 Develop Post Function 7 days Thu 20.01.22 Fri 28.01.22
49 Develop Create Point

Function
6 days Fri 21.01.22 Fri 28.01.22

50 Develop Create Signal
Function

8 days Wed
26.01.22

Fri 04.02.22

51 Develop List Space
Function

6 days Fri 04.02.22 Fri 11.02.22

52 Develop List Point
Function

6 days Fri 04.02.22 Fri 11.02.22

53 Develop List Signals
Function

6 days Fri 04.02.22 Fri 11.02.22

54 Develop Retrieve Latest
Signal Function

9 days Fri 11.02.22 Wed
23.02.22

55 Develop Save Data
Function

6 days Fri 25.02.22 Fri 04.03.22

56 Develop Create Headers
Function

2 days Fri 04.03.22 Mon
07.03.22

57 Develop Python
Examples

11 days Fri 04.03.22 Fri 18.03.22

58 Program Arduino 15 days Mon 21.03.22Fri 08.04.22
59 Pass Serial and Client to

Library
5 days Mon

21.03.22
Fri 25.03.22

60 Develop Post Function 6 days Fri 25.03.22 Fri 01.04.22
61 Develop Retrieve

Function
6 days Fri 25.03.22 Fri 01.04.22

62 Develop Examples 6 days Fri 01.04.22 Fri 08.04.22
63 Program ASP.net 22 days Mon 11.04.22Tue 10.05.22
64 Develop HTTP Client 5 days Mon 11.04.22Fri 15.04.22
65 Develop Space List Page 10 days Mon

11.04.22
Fri 22.04.22

66 Develop Signal Display 11 days Fri 15.04.22 Fri 29.04.22
67 Develop Administration

Page
6 days Fri 29.04.22 Fri 06.05.22

68 Develop Create Space
Function

3 days Fri 29.04.22 Tue 03.05.22

69 Develop Create
Sub-Space Function

3 days Fri 29.04.22 Tue 03.05.22

Task

Split

Milestone

Summary

Project Summary

Inactive Task

Inactive Milestone

Inactive Summary

Manual Task

Duration-only

Manual Summary Rollup

Manual Summary

Start-only

Finish-only

External Tasks

External Milestone

Deadline

Progress

Manual Progress

Page 3

Project: D4-API
Date: Tue 17.05.22

ID Task
Mode

Task Name Duration Start Finish Predecessors

70 Develop Delete Space
Function

2 days Mon
02.05.22

Tue 03.05.22

71 Develop Create Point
Function

3 days Wed
04.05.22

Fri 06.05.22

72 Develop Add Signal
Type Function

3 days Wed
04.05.22

Fri 06.05.22

73 Develop Remove
Signal Type Function

3 days Wed
04.05.22

Fri 06.05.22

74 Develop Delete Point
Function

3 days Wed
04.05.22

Fri 06.05.22

75 Add Session Stored
Credentials

3 days Fri 06.05.22 Tue 10.05.22

Task

Split

Milestone

Summary

Project Summary

Inactive Task

Inactive Milestone

Inactive Summary

Manual Task

Duration-only

Manual Summary Rollup

Manual Summary

Start-only

Finish-only

External Tasks

External Milestone

Deadline

Progress

Manual Progress

Page 4

Project: D4-API
Date: Tue 17.05.22

	Development of Open Source Datalogging and Monitoring Resources for IoT Platform
	Summary

	Preface
	Contents
	List of Figures
	Nomenclature

	Introduction
	Background

	Internet of Things
	MQTT
	REST
	GraphQL
	ASP.NET Core
	Thingspeak
	Grafana
	Github
	IoT Maker Devices
	Arduino
	Raspberry PI

	Programming Languages
	Python
	C#

	Dimension Four
	GraphQL Solution
	Dimension Four Terminology

	GraphQL Playground

	Development
	Planning
	Python Development
	Arduino Development
	C# Development

	Python Library
	Python Examples

	Arduino Library
	ASP.net Web-Application
	Discussion
	Conclusion
	Bibliography
	Project Description
	Gantt Diagram

